Flexible State-Merging for Learning (P)DFAs in Python

نویسندگان

  • Christian A. Hammerschmidt
  • Benjamin Loos
  • Radu State
  • Thomas Engel
چکیده

We present a Python package for learning (non-)probabilistic deterministic finite state automata and provide heuristics in the red-blue framework. As our package is built along the API of the popular scikit-learn package, it is easy to use and new learning methods are easy to add. It provides PDFA learning as an additional tool for sequence prediction or classification to data scientists, without the need to understand the algorithm itself but rather the limitations of PDFA as a model. With applications of automata learning in diverse fields such as network traffic analysis, software engineering and biology, a stratified package opens opportunities for practitioners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Coevolutionary Learning of Deterministic Finite Automata

This paper describes an active learning approach to the problem of grammatical inference, specifically the inference of deterministic finite automata (DFAs). We refer to the algorithm as the estimation-exploration algorithm (EEA). This approach differs from previous passive and active learning approaches to grammatical inference in that training data is actively proposed by the algorithm, rathe...

متن کامل

Identifying an automaton model for timed data

A model for discrete event systems (DES) can be learned from observations. We propose a simple type of timed automaton to model DES where the timing of the events is important. Learning such an automaton is proven to be NP-complete by a reduction from the problem of learning deterministic finite state automata (DFA) without time. Based on this reduction, we show how the currently best learning ...

متن کامل

Learning DFA: evolution versus evidence driven state merging

Learning Deterministic Finite Automata (DFA) is a hard task that has been much studied within machine learning and evolutionary computation research. This paper presents a new method for evolving DFAs, where only the transition matrix is evolved, and the state labels are chosen to optimize the fit between final states and training set labels. This new procedure reduces the size and in particula...

متن کامل

A likelihood-ratio test for identifying probabilistic deterministic real-time automata from positive data1

Timed automata (TAs) are finite state models that represent timed events using an explicit notion of time, i.e., using numbers. They can be used to model and reason about real-time systems. In these system, each occurrence of a symbol (event) is associated with a time value, i.e., its time of occurrence. TAs can be used to accept or generate a sequence (a1, t1)(a2, t2)(a3, t3) . . . (an, tn) of...

متن کامل

Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm

This paper first describes the structure and results of the Abbadingo One DFA Learning Competition. The competition was designed to encourage work on algorithms that scale well—both to larger DFAs and to sparser training data. We then describe and discuss the winning algorithm of Rodney Price, which orders state merges according to the amount of evidence in their favor. A second winning algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016